Correlated PLSA for Image Clustering
نویسندگان
چکیده
Probabilistic Latent Semantic Analysis (PLSA) has become a popular topic model for image clustering. However, the traditional PLSA method considers each image (document) independently, which would often be conflict with the real occasion. In this paper, we presents an improved PLSA model, named Correlated Probabilistic Latent Semantic Analysis (C-PLSA). Different from PLSA, the topics of the given image are modeled by the images that are related to it. In our method, each image is represented by bag-of-visual-words. With this representation, we calculate the cosine similarity between each pair of images to capture their correlations. Then we use our C-PLSA model to generate K latent topics and Expectation Maximization (EM) algorithm is utilized for parameter estimation. Based on the latent topics, image clustering is carried out according to the estimated conditional probabilities. Extensive experiments are conducted on the publicly available database. The comparison results show that our approach is superior to the traditional PLSA for image clustering.
منابع مشابه
Integrating Clustering and Multi-Document Summarization by Bi-Mixture Probabilistic Latent Semantic Analysis (PLSA) with Sentence Bases
Probabilistic Latent Semantic Analysis (PLSA) has been popularly used in document analysis. However, as it is currently formulated, PLSA strictly requires the number of word latent classes to be equal to the number of document latent classes. In this paper, we propose Bi-mixture PLSA, a new formulation of PLSA that allows the number of latent word classes to be different from the number of late...
متن کاملMultilabel Image Annotation Based on Double-Layer PLSA Model
Due to the semantic gap between visual features and semantic concepts, automatic image annotation has become a difficult issue in computer vision recently. We propose a new image multilabel annotation method based on double-layer probabilistic latent semantic analysis (PLSA) in this paper. The new double-layer PLSA model is constructed to bridge the low-level visual features and high-level sema...
متن کاملHeterogeneous Transfer Learning for Image Clustering via the SocialWeb
In this paper, we present a new learning scenario, heterogeneous transfer learning, which improves learning performance when the data can be in different feature spaces and where no correspondence between data instances in these spaces is provided. In the past, we have classified Chinese text documents using English training data under the heterogeneous transfer learning framework. In this pape...
متن کاملRefining Image Annotation by Integrating PLSA with Random Walk Model
In this paper, we present a new method for refining image annotation by integrating probabilistic latent semantic analysis (PLSA) with random walk (RW) model. First, we construct a PLSA model with asymmetric modalities to estimate the posterior probabilities of each annotating keywords for an image, and then a label similarity graph is constructed by a weighted linear combination of label simil...
متن کاملDocument Clustering in a Learned Concept Space
Document clustering is one of the fundamental techniques of unsupervised learning from unstructured textual data which constitutes a real saving in terms of efficiency for various information retrieval (IR) tasks. The clustering results are not only used as basic information for the structure of a collection, but also as a preceding step before conducting other IR applications. On the other han...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011